
Cloning Max/MSP Objects: a Proposal for the Upgrade of Cyclone

Alexandre Torres Porres
EL Locus Solus

São Paulo-SP Brazil
porres@gmail.com

Derek Kwan
Fresno, CA USA

derek.x.kwan@gmail.com

Matthew Barber
Rochester, NY USA
brbrofsvl@gmail.com

Abstract

The Max/MSP compatibility library Cyclone has
been updated, extending compatibility to Max
versions 5, 6 and 7 over the current canonical Cy-
clone version’s compatibility with Max version 4.
Primary development goals have included updat-
ing existing objects to reflect features introduced
in newer versions of Max, cloning Max objects
missing from Cyclone, fixing bugs in existing code,
and addressing errata found in Max objects and
documentation. Secondary goals have involved an
upgrade to documentation, streamlining the code-
base, and improving the build system. Community
discussion will resolve the project’s future as either
an update or fork of the current Cyclone.

Keywords

Cyclone, Max/MSP, Externals, Library, Update

1 Introduction
The Cyclone library is a set of externals that clones
object classes from Cycling ’74’s Max/MSP soft-
ware for Pure Data. Cyclone expands Pd with a
large set of externals and provides some level of
compatibility between Pd and Max, helping users
of both systems in the development of equivalent
or similar patches, and giving Max users a con-
venient gateway to Pd. Original development of
Cyclone brought compatibility with Max version
4. We present a significant update to Cyclone
which brings compatibility up to recent Max ver-
sions (7.3.0 at the time of this writing) by adding
new functionalities introduced in newer Max ver-
sions to Cyclone’s classes, fixing bugs, and writing
new documentation.

2 A Brief History of Cyclone
Putting our update in its proper coding and social
contexts requires a history of Cyclone.

2.1 Maintainers and Versions

The first iteration of Cyclone was begun in April
2002 by Krzysztof Czaja, when Max was at version
4.0. [1] The earliest experimental alpha release,
cyclone-0.1-alpha1, was introduced to the Pd com-
munity in November 2002. [2] It had 60 control
(Max) objects, and 12 signal (MSP) objects, col-
lectively named “hammer” and “sickle,” respec-
tively. Cyclone grew to 166 cloned objects by 2005,
but was still in alpha development (cyclone-0.1-
alpha55).1

Cyclone could be loaded in several ways: in
one, each object could be loaded from its own com-
piled binary. In another, hammer, a sub-library
with all the control objects compiled into one file,
and sickle, a similar sub-library with the sig-
nal objects could be loaded separately. Loading
the cyclone sub-library would load hammer and
sickle, as well as a few non-alphanumeric sig-
nal “bin-ops” like >=∼∼∼, known in Cyclone as “net-
tles.” Loading the sub-library maxmode would load
hammer, sickle, and cyclone, along with a suite
of “dummy” classes, which instantiated nonfunc-
tional objects with the names of classes not yet
cloned, so that – in principle – a Max patch could
be opened from Pd. Finally, an executable bi-
nary cyclist was provided to convert binary Max
patches into the equivalent text forms.

Hans-Christoph Steiner made Cyclone avail-
able in Pd-extended, and because Czaja ceased de-
veloping it in 2005, Steiner took over maintenance
of Cyclone until 2013. The library was updated to
cyclone-0.1-alpha56 for Pd-extended version 0.43.2

All development on Pd-extended ceased in 2013,
and Cyclone was left unmaintained as a result.

Fred Jan Kraan assumed maintenance of Cy-
clone in December 2014. He made cyclone-0.1-
alpha57 available via the deken library manager
plugin, and replaced it with the current canoni-

1Although Krzysztof Czaja’s webpage no longer exists, a copy may be found at http://fjkraan.home.xs4all.nl/
digaud/puredata/cyclone/cyclone_site/cyclone.html, which includes a downloadable source for cyclone-0.1-alpha54.

2Pd-extended releases may be found at https://puredata.info/downloads/pd-extended/releases/ and at the
sourceforge.net repository https://sourceforge.net/projects/pure-data/files/pd-extended/

http://fjkraan.home.xs4all.nl/digaud/puredata/cyclone/cyclone_site/cyclone.html
http://fjkraan.home.xs4all.nl/digaud/puredata/cyclone/cyclone_site/cyclone.html
https://puredata.info/downloads/pd-extended/releases/
https://sourceforge.net/projects/pure-data/files/pd-extended/

cal version cyclone-0.2beta in December 2015. In
February 2016, Kraan decided to abandon active
development, but he still maintains the cyclone-
0.2beta package. This version contains the original
166 cloned cyclone objects plus a teeth∼∼∼ object.
The individual hammer and sickle libraries were
no longer compiled by default. Kraan also fixed
several bugs and revamped the documentation.

2.2 Cyclone Repositories

The original Cyclone library was a sub-library of
the miXed library, which was developed by Cy-
clone’s original author Krzysztof Czaja.3 Kraan’s
forked git repository hosts versions cyclone-0.1-
alpha57 and cyclone-0.2beta, and employs Katja
Vetter’s pd-lib-builder.4

2.2.1 Our Repository

In February 2016, as a response to Fred Jan
Kraan’s decision to cease development and provide
maintenance only, Porres forked cyclone-0.2-beta1
to a new git repository to continue Cyclone de-
velopment.5 Our branch is in active development,
independent of the original developer and subse-
quent maintainers.6 Our intent is to continue work
on Cyclone without diverging from its original goal
and scope. Krzysztof Czaja could not be reached
to discuss our plans for Cyclone development, but
Steiner created ground rules for Cyclone develop-
ment on the Pd-list:

About maintaining cyclone, I think
a reorg would be great, and further
maintenance as well. If you want to do
whatever you want with it, then just
make a fork and work on it as a new
name. If you want to stick to cyclone’s
central goal of Max/MSP compatibil-
ity, then keep working on it as cyclone.
But please do not work on cyclone and
break the Max/MSP compatibility. [3]

Because the Cyclone library has a very clearly
defined scope – it consists only of cloned objects
from Max/MSP – we have been able to remain
faithful to its central goal. Thus our intent is to

continue developing this library as Cyclone rather
than as a fork with a new name. We do not wish
to impose any personal view on or control over
the project; on the contrary, we consider Cyclone
to belong ultimately to the Pd community and not
to any particular maintainer. We are therefore ea-
ger to collaborate with anyone who wishes to help
with fixing bugs and coding new objects. Before
releasing an official version of our work, we wish
to discuss the future of Cyclone with the Pd com-
munity. With community agreement we plan to
release our project as cyclone-0.3, with an alpha
test version ready to demo at PdCon16.

3 Cyclone 0.3

Cyclone was originally developed in the Max 4 era,
and Cycling ’74 has since introduced new func-
tionalities from Max versions 5 to 7. Cyclone was
compliant only with Max 4 through version al-
pha56, but when Kraan took over he was open
to including features from Max 5. The current
canonical version of Cyclone (0.2beta) is still for
the most part compliant only with Max 4, with a
few exceptions (for instance, the clear method of
delay∼∼∼ was new with Max 5 and is implemented
in cyclone-0.2beta).

Our primary goals for Cyclone version 0.3 have
been updating the existing codebase to reflect new
features from Max versions 5-7 (up to 7.3.0 as of
this writing), cloning important objects currently
missing from Cyclone, fixing bugs in Cyclone code,
and addressing bugs and errata in Max objects
and documentation. In order to make the project
more accessible for users and developers, we have
completely rewritten the Cyclone documentation,
restructured the codebase, and improved the build
process.

3.1 Updating Cyclone to Max 7

Updating existing Cyclone objects to Max 7 com-
patibility and writing documentation to reflect this
has received by far our most intense focus and
hardest work. A careful analysis showed that 54
objects required an update to be compliant with

3There are two miXed repositories, a sourceforge.net site, https://svn.code.sf.net/p/pure-data/svn/trunk/
externals/miXed/, and a migrated git repository https://git.puredata.info/cgit/svn2git/libraries/miXed.git/

4Kraan’s git repository is https://github.com/electrickery/pd-miXedSon (note that although it is called pd-
miXedSon, only the Cyclone library has been forked). Vetter’s pd-lib-builder is available at https://github.com/
pure-data/pd-lib-builder.

5Our branch is https://github.com/porres/pd-cyclone
6Kraan graciously links to our branch as the one in active development.

https://svn.code.sf.net/p/pure-data/svn/trunk/externals/miXed/
https://svn.code.sf.net/p/pure-data/svn/trunk/externals/miXed/
https://git.puredata.info/cgit/svn2git/libraries/miXed.git/
https://github.com/electrickery/pd-miXedSon
https://github.com/pure-data/pd-lib-builder
https://github.com/pure-data/pd-lib-builder
https://github.com/porres/pd-cyclone

recent Max versions.7 This work is nearly com-
plete as of this writing.8

Cyclone’s relationship to Max 4 is complicated.
Max 4 was quite long lived, with updates from
2001 to 2007, which covered versions 4.0 to 4.6
(Max 5 was released in 2008). Since Cyclone was
first released in 2002 with compatibility to Max
4.0, changes in Max after version 4.0 were not al-
ways reflected in the Cyclone code. For instance,
the second argument to coll, which prevents the
object from searching for a file with the symbol
given in the first argument, was introduced in Max
4.0.8, but was never implemented in Cyclone.

Moreover, some features from Max 4.0 never
made it into Cyclone objects (e.g. the missing
“symout” argument to sprintf), and a number of
bugs persist. We have treated the various miss-
ing features from Max 4.0 to 4.6 as bugs, since
cyclone-0.1-alpha56 contained features from Max
4.6 and seemed to be incomplete on its own terms.
Therefore we have not counted them among the
54 objects requiring update from Max 4 to Max
5+ compatibility. Part of this distinction is aca-
demic, since most of the objects missing features
from Max 4 also needed updates to bring com-
patibility to Max 5+ (exceptions include funbuff,
mousestate, substitute, and slide∼∼∼).

To put this in perspective, we note that 54
objects is just under one-third of the 166 orig-
inally cloned objects, so the majority of them
have not changed in Max from versions 4.6 to 7.3.
Max/MSP objects have tended to reach a level of
stability and maturity after time, but sometimes
old bugs and kludges have also tended to be re-
tained in mature objects (see 3.2.4 Inconsisten-
cies below).

Fortunately, nothing has been introduced in
newer versions of Max that makes an update of
Cyclone impractical. In fact, the major feature ad-
ditions to Max have come in the form of large pack-
ages such as Jitter, Gen, and JavaScript capabil-
ity, which can safely be left out of Cyclone. Most
of the major changes to objects between Max 4.6
and 7.3 occurred in versions 5 and 6. scope∼∼∼ is the
only object currently cloned in Cyclone to change
in Max from versions 6 to 7 (this was merely a dif-
ference in default color scheme); only midiparse
and midiformat received updates between Max
7.0 and Max 7.3.0, requiring updates in Cyclone.

3.1.1 Attributes

Some updates to Max cannot be as easily ad-
dressed as the addition of methods to existing
objects, for example. Max “attributes” illustrate
how our work brings some Max semantics into Cy-
clone and make them compatible with Pd. At-
tributes in Max function similarly to property set-
tings and option flags in Pd. Although present
in a few object classes from Max 4.5, attributes
began to proliferate among Max/MSP’s object
classes in Max versions 5 and 6. [4] Property win-
dows exist for gui objects in Pd, and some classes
(e.g. declare and sigmund∼∼∼) take flags to con-
trol how the object operates. In current Max
versions, many object settings can be controlled
with attributes, using the special attribute syntax
[object @attribute-name <setting>].

In addition, every object has a set of attributes
called “common box attributes,” which set the look
and feel of the object box either via @attribute
flags to the object or a graphical menu in the in-
spector. Since our purpose is only to clone the
function of Max classes and not their appearance,
we have opted not to include support for common
box attributes. While Pd’s -flag options are syn-
tactically identical to Max’s @attribute options,
we decided to use Max-style attributes rather than
Pd-style flags for this kind of option setting in Cy-
clone. It is faithful to the Max compatibility goal
and it provides Max users with a familiar environ-
ment.

In Max, once an object is instantiated, at-
tributes can be set dynamically in three additional
ways: first, via the inspector, second with a spe-
cial attribute-editing object attrui, and third by
sending the object a message with the attribute
name and its argument(s). Pd does not have an in-
spector, but rather calls dedicated properties win-
dows for gui objects; therefore for code simplicity
we plan to make properties windows only for gui
objects like we did with scope∼∼∼, leaving the other
objects with only @attribute flags. The attrui
object inspects an object it is connected to for at-
tributes and allows the user to set them from the
patch. While such an object is possible in princi-
ple for Pd, we have decided to implement dynamic
attribute setting via message passing only, saving
any development of attrui for the future.

7An outlier is the comment object, which we are also updating. However, due to differences in gui toolkits and
platforms will likely never behave in exactly the same way as Max’s, so it is not listed among these 54.

8Current progress, as well as a complete list of objects affected by our work, may be found at https://github.com/
porres/pd-cyclone/wiki/cyclone-0.3-changlelog

https://github.com/porres/pd-cyclone/wiki/cyclone-0.3-changlelog
https://github.com/porres/pd-cyclone/wiki/cyclone-0.3-changlelog

while(argc > 0)
{

if(argv -> a_type == A_FLOAT)
{

t_float argval = atom_getfloatarg(0, argc, argv);
switch(argnum)
{

case 0:
tripeak = argval;
break;

default:
break;

}
argnum++;
argc--;
argv++;

}
else if (argv -> a_type == A_SYMBOL)
{

t_symbol *curarg=atom_getsymbolarg(0, argc, argv);
if(strcmp(curarg->s_name, "@lo")==0)
{

if(argc >= 2)
{

trilo = atom_getfloatarg(1, argc, argv);
argc-=2;
argv+=2;

}
else goto errstate;

}
else if(strcmp(curarg->s_name, "@hi")==0)
{

if(argc >= 2)
{

trihi = atom_getfloatarg(1, argc, argv);
argc-=2;
argv+=2;

}
else goto errstate;

}
else goto errstate;

}
else goto errstate;

}

Figure 1. The attribute parsing loop from triangle∼∼∼.

Introduction of attributes necessitates parsing
an object’s arguments as a list. If an object has
more than one settable attribute, the @attribute
flags may be called in any order, which requires
a flexible constructor. As with Pd vanilla objects
that allow flag options, elements of the argument
list are parsed one-by-one, comparing any symbols
to the symbols in the list of @attribute possibili-
ties for that object. If the symbol does not match
any attributes, then it may be considered a normal
creation argument, such as the name of an array. If
neither condition holds, or if the requisite number
of arguments to the @attribute are not present,
the constructor lands in an error state and the ob-
ject does not instantiate. Figure 1 is an exam-
ple of an attribute parsing loop from triangle∼∼∼,
which has two possible attributes, @lo and @hi.

3.1.2 “Magic”

The difference between Max’s patching syntax and
Pd’s is a common obstacle for Max users who are
new to Pd. These differences make things difficult
for a Max compatibility library. Some of them are
intractable on the Pd side without making changes
to the Pd core; for instance, Pd message fanouts
require trigger to operate in proper order while
Max controls order by spatial placement of objects.
Others demand a hybrid approach; for instance
Max does not share Pd’s commitment to deter-
ministic depth-first processing. For instance, coll
can load large files in the background while other
control and signal operations continue; in Cyclone,
coll can be made to be deterministic if desired, or
to use a threaded file-loading function that breaks
determinism.9

There are also differences in signal inlet behav-
ior between Max and Pd that can be addressed
from within the external class. In Pd’s tilde ob-
jects, secondary signal inlets contain a float field
that can be set by an incoming float. If the inlet
has an incoming signal connection it will ignore
that float field. If it does not, Pd writes the value
of that float field to its inlet’s signal vector, thus
promoting floats to signals. The object’s behav-
ior is the same in each case. In Max/MSP, floats
are usually promoted to signals, but sometimes
they are ignored or used to set specific parame-
ters whether or not a signal is connected. Likewise
some MSP objects have different internal behav-
iors depending on whether a signal is connected
to one or more of its inlets, regardless of whether
floats are promoted to signals.

This discrepancy is difficult to resolve because
Pd and Max users have different expectations, and
Cyclone has to fulfill commitments to both. Past
Cyclone versions have favored matching the be-
havior of Max objects’ inlets whenever the Pd api
makes it possible, and so we have decided to con-
tinue this practice and extend it. Cyclone contains
a collection of shared “unstable” modules which
work by adapting Pd’s api in novel and sometimes
obscure ways.

The three primary modules involved are forky,
which contains sections of conditionally compiled
code that preserve functionality when Cyclone is
compiled against different versions of Pd; fragile,
which contains functions that depend on specific

9In principle the latter is not much different from employing a random delay in a message chain.

int forky_hasfeeders(t_object *x, t_glist *glist,
int inno, t_symbol *outsym)

{
t_linetraverser t;
linetraverser_start(&t, glist);
while (linetraverser_next(&t))
{

if (t.tr_ob2 == x && t.tr_inno == inno
#if FORKY_VERSION >= 36

&& (!outsym ||
outsym == outlet_getsymbol(t.tr_outlet))

#endif
)
return (1);

}
return (0);

}

/*--*/

static void scope_dsp(t_scope *x, t_signal **sp)
{

x->x_ksr = sp[0]->s_sr * 0.001;
int xfeeder, yfeeder;
xfeeder = forky_hasfeeders((t_object *)x,

x->x_glist, 0, &s_signal);
yfeeder = forky_hasfeeders((t_object *)x,

x->x_glist, 1, &s_signal);
scope_setxymode(x, xfeeder + 2 * yfeeder);
dsp_add(scope_perform, 4, x,

sp[0]->s_n, sp[0]->s_vec, sp[1]->s_vec);
}

Figure 2. forky_hasfeeders(), and its call in scope∼∼∼.

implementation details of Pd (e.g. from m_imp.h)
and which are likely to break in new versions of
Pd; and fringe, which contains functions deemed
likely to be included in Pd’s official api in the
future.10 In personal correspondence about the
project, we have begun calling this collection of
novel functions “magic tricks.”

A good illustration of the magic tricks and how
they are applied is the signal visualization class
scope∼∼∼. This object has two signal inlets and be-
haves differently depending on how the inlets are
fed.11 When only the left inlet has signal input,
the signal is drawn with time plotted on the hor-
izontal axis and amplitude on the vertical; this
arrangement is reversed when only the right inlet
has a signal, with time on the vertical axis and
amplitude on the horizontal. When both are con-
nected with a signal, the object goes into “X-Y
mode,” and plots the signals parametrically on a
Cartesian plane. When neither inlet is connected,
the object draws a flat horizontal zero-amplitude

line. Furthermore, neither inlet promotes floats to
signals: floats in the right inlet set the number of
signal points displayed in the display buffer, and
floats in the left inlet set the number of signal sam-
ples used to draw each point. The left inlet also
accepts a number of method messages.

In order to alter the behavior of an object
based on its signal input configuration, Cyclone
classes use the function forky_hasfeeders() (see
Figure 2). When called from within an object,
this function traverses the object’s canvas connec-
tions until it finds the object and the relevant inlet,
and then checks whether it is connected, and if so
whether that connection is a signal connection. It
is called in the dsp() routine, and can be used to
set options or load different perform() functions
based on the return value.

Keeping the two signal inlets from promoting
floats to signals is more difficult, and the proce-
dures involved are newly introduced into Cyclone
classes. These procedures differ for left and right
inlets. Left inlets in Pd have an underlying infras-
tructure that automatically allows them to receive
both signals and messages, which is usually ac-
cessed through the CLASS_MAINSIGNALIN()macro.
In the usual case, incoming floats to the left inlet
sets a float member of the class’s struct, which are
internally promoted to signals whenever no signal
connection is attached. This can be overridden by
giving the class both a signal and a float method,
as in this example from scope∼∼∼:

class_addmethod(scope_class,nullfn,gensym("signal"),0);
class_addfloat(scope_class,(t_method)scope_float);

Incoming floats now call scope_float() instead
of the default float method.

Doing the same with secondary inlets is more
difficult because float inputs do not automatically
call a class method, but rather set a float field
in the inlet’s struct. Direct access to this field is
usually hidden, but the obj_findsignalscalar()
routine from Pd’s m_obj.c returns that field’s ad-
dress.12 The class’s perform() routine(s) can then
poll that field for changes every tick and call a
method if a change is detected. Here is how it
works in scope∼∼∼:

10This organization is both pragmatic and problematic, and is undergoing restructuring. See 3.2.1 Code Restruc-
turing below for more details.

11The following only applies when dsp is on.
12Cyclone’s fragile module contains a similar routine, fragile_inlet_signalscalar(). We might phase this

out because it requires maintaining a copy of the inletunion and _inlet declarations in m_obj.c, whereas using
obj_findsignalscalar() only requires declaring it as an EXTERN with the proper arguments.

int bufsize = (int)*x->x_signalscalar;
if (bufsize != x->x_bufsize)

scope_bufsize(x, bufsize);

3.1.3 Other Significant Revisions

We have made a number of especially significant
revisions to some classes in the process of moving
to Cyclone version 0.3. The following is a brief
catalog of salient examples.

• Previous versions of comb∼∼∼ and allpass∼∼∼ all had
an error in the difference equation that required
a complete rewrite of their perform() routines,
including the addition of secondary delay buffers.
We added a new teeth∼∼∼ object based on comb∼∼∼

to replace a former abstraction.

• cycle∼∼∼ now has an internal 16384-point, fully
symmetric cosine table so that, unlike with osc∼∼∼

and previous iterations of cycle∼∼∼, frequency
modulation is stable over time.

• We have implemented the extra interpolators
that were added to wave∼∼∼ in Max 6. Since Pd’s
cubic Lagrange interpolator is not among them,
but was included in previous versions of Cyclone,
we have retained it as an option.13

• delay∼∼∼ now accepts signals to control samples of
delay, with cubic interpolation.

• The bitwise signal operators bitand∼∼∼, bitor∼∼∼,
and bitxor∼∼∼ have been revised to fix their sec-
ond inlets (which set the objects’ bitmasks) using
the procedures described in the previous section.
All of the type punning required by these objects
has been rewritten for stability, replacing pointer
casts with unions. Denormal output values are
set to zero as they are in Max.

• train∼∼∼ now allows pulses of width 0 (resulting
in single-sample widths) and width 1 (resulting
in widths of one sample less than an entire cy-
cle). The phase behavior has also been altered
to respond correctly when changed.

• fromsymbol now allows any single- or multi-
character string to act as delimiter.

• funnel has been almost completely rewritten so
that lists are stored properly at each inlet and
output correctly upon receiving a bang (previ-
ously only the first element of a list was stored
and output on bang).

• sustain has been rewritten to accommodate two
additional modes for handling repeated note-on
messages, which were introduced after Max 4.

• scope∼∼∼ has undergone major surgery. It now
supports the “Y-only” mode and the “alternate

drawstyle” options. It has new methods allow-
ing rgb values to be set according to a 0.0 to 1.0
float range. The “X-Y” mode has been simpli-
fied and its performance improved. Several bugs
were fixed, including a crasher bug on x86_64.
Finally, it has a new Pd-style properties window.

3.2 Beyond Max Compatibility

Our primary goal has been bringing existing Cy-
clone code up to full compatibility with Max 5+,
but we have made various other improvements
along the way. Besides updating the documen-
tation, we have restructured the codebase, created
a number of new cloned objects, and fixed bugs,
many of them longstanding. We also addressed
some bugs in the Max objects themselves.

3.2.1 Code Restructuring

Over the course of the update it became clear
that the Cyclone codebase was in need of restruc-
turing and streamlining. Fred Jan Kraan initi-
ated this process in alpha57 and 0.2beta by im-
porting pd-lib-builder and adjusting the build tar-
gets. As of 0.2beta (the current version), the sub-
libraries hammer, sickle, and maxmode are not
compiled by default. The cyclone sub-library has
been renamed nettles, and it only loads the non-
alphanumeric bin-ops (and not all of the control
and signal objects).

We have taken the restructuring process sev-
eral steps further. Given the increasingly wider
divergence of Max and Pd since the Max 4 era, any
effort to emulate Max as deeply as earlier Cyclone
attempts seems forlorn. We therefore no longer
keep cyclist or the legacy sub-libraries as build
targets, but keep their code in a maintenance di-
rectory. We did, however, restore the cyclone sub-
library, which loads the bin-ops and serves as a
space for future implementation of some of Max’s
syntactic sugar (e.g. the zl.mode syntax). Since
the sub-libraries are no longer in operation, all of
the source files for the object classes have been
moved from “hammer” and “sickle” directories to
“control” and “signal” directories. This also helps
newcomers by making the purpose of the directory
structure clear.

The examples in previous sections illustrate
the extent to which Cyclone relies heavily on code
modules shared among the object classes. Many
of the functions in these modules serve as thin

13The MSP wave∼∼∼’s new interpolators are identical with the ones found in a 1999 web article by Paul Bourke, and
they are included in the same order they appear in the paper. The Max documentation contains no attribution; Bourke’s
article is here: http://paulbourke.net/miscellaneous/interpolation/.

http://paulbourke.net/miscellaneous/interpolation/

wrappers over the standard Pd api. The two
most important are the sic and arsic (i.e. “sickle”
and “array sickle”) modules, which create t_sic
and t_arsic types inheriting from Pd’s t_object.
These modules also implement custom creation
methods such as arsic_new() and sic_inlet(),
and provide routines for use in all signal object
classes (sic) and all object classes that access Pd
arrays (arsic). We have begun editing object
classes to remove this cruft. By standardizing Cy-
clone to comport with the Pd api, we have ren-
dered the codebase more transparent and made
our new contributions much easier to code, espe-
cially for attributes that affect inlet instantiation
and the “magic” code.

Eliminating dependence on the sicmodule has
been relatively easy, amounting to replacing the
wrapper functions with those from the standard
Pd api. Disentangling from the arsic module has
been much more difficult, because arsic emulates
MSP’s multichannel buffer∼∼∼ by allowing signal
classes to read from and write to multiple Pd ar-
rays (which are collected according to a naming
convention). arsic also depends on the “vector of
floats” submodule vefl, which has custom func-
tions for gaining access to Pd array contents.

The necessary functions from vefl and arsic
have been collected into a new “Cyclone buffer”
module cybuf. This module introduces a new
type, t_cybuf, which is similar to t_arsic except
it has no t_object member. An object class that
depends on cybuf can now keep its own t_object
member, which used to be replaced with t_arsic.
Now that the array functions in cybuf are sepa-
rated from the standard Pd object creation meth-
ods, they can be readily replaced or supplemented
if a proper buffer∼∼∼ class is developed, or if multi-
channel arrays are ever introduced in vanilla Pd.

As mentioned above, the code in the forky,
fragile, and fringe modules is not collected
according to similar function, but rather simi-
lar maintenance status vis-à-vis Pd’s api. From
a pragmatic standpoint, this does make main-
tenance somewhat easier because there is less
disruption when there is a change in Pd. On
the other hand, it makes development more dif-
ficult, especially for new contributors. One ex-
ample that proves this point is inlet and outlet
handling. In 3.1.2 “Magic” we discussed the
forky_hasfeeders() function, which returns the
connection status of an inlet. There is a cor-
responding function that does the same for out-

lets, but it is found in the fragile module in-
stead – fragile_outlet_connections(). There
are many similar examples. We plan to reorganize
these modules according to function, and in the
process eliminate code that provides compatibility
with very old versions of Pd. We hope that these
and other improvements to the code structure will
encourage participation from other contributors,
who may not have wanted to learn an unnecessary
and complicated wrapper api.

3.2.2 New Object Classes

Cyclone 0.3 introduces 45 new object classes that
were not present in previous versions.

13 control classes: acosh asinh atanh atodb
dbtoa join loadmess pak pong rdiv
rminus round scale

32 signal classes: atodb∼∼∼ biquad∼∼∼ bitsafe∼∼∼

cascade∼∼∼ cross∼∼∼ dbtoa∼∼∼ degrade∼∼∼

downsamp∼∼∼ equals∼∼∼ filtercoeff∼∼∼

freqshift∼∼∼ gate∼∼∼ greaterthan∼∼∼

greaterthaneq∼∼∼ hilbert∼∼∼ lessthan∼∼∼

lessthaneq∼∼∼ modulo∼∼∼ notequals∼∼∼ number∼∼∼

phaseshift∼∼∼ plusequals∼∼∼ rdiv∼∼∼ rect∼∼∼

rminus∼∼∼ round∼∼∼ saw∼∼∼ scale∼∼∼ selector∼∼∼

thresh∼∼∼ tri∼∼∼ trunc∼∼∼

The bandlimited oscillators rect∼∼∼, saw∼∼∼, and
tri∼∼∼ as well as the signal number box number∼∼∼

currently exist in Cyclone 0.3 as abstractions, but
we are planning to implement them as externals
in future versions.

3.2.3 Documentation

Czaja originally released Cyclone with no docu-
mentation. Many of the changes to Cyclone over
the years were attempts to create good documen-
tation. After careful scrutiny we found that much
of the existing documentation had mistakes. Be-
cause we were already planning on a major doc-
umentation update for the new and upgraded ob-
jects, we made the decision to rewrite all of the
documentation from scratch. This had the dual
purpose of systematically testing every Cyclone
object to ensure it complied with the specifications
from the Max/MSP documentation.

In the process we found that the Max/MSP
objects and documentation also had a number of
bugs and inconsistencies, which made reverse en-
gineering that much more difficult. Many objects
had undocumented behaviors, so we had to make
several decisions about whether a given undocu-
mented behavior was a feature or a bug. We have

tried not to duplicate obvious bugs, and to thor-
oughly document the behaviors we have retained.

In some cases we have even rewritten the stated
purpose of an object, where the Max documen-
tation was either misleading or incomplete. For
instance, the documentation for wave∼∼∼ bills it as
a sample player, where in fact it is an all-purpose
buffer reader that can be used for oscillating wave-
forms, waveshaping, etc. This major overhaul is
still far from complete, however, and is likely to
be what delays a transition from alpha to beta.

3.2.4 Inconsistencies

As discussed above, the many differences between
Pd and Max have made cloning some features dif-
ficult. There are still several inconsistencies be-
tween some Max 7 objects and their Cyclone 0.3
counterparts. As of version 0.47.1, Pd lacks a
multichannel array object, implemented in MSP
as buffer∼∼∼. The MSP objects index∼∼∼, peek∼∼∼,
buffir∼∼∼, poke∼∼∼, wave∼∼∼, record∼∼∼, and play∼∼∼ all
read from and/or write to buffer∼∼∼ objects. These
objects in Cyclone 0.3 have been written to use the
cybuf module. As mentioned above, the functions
in cybuf can be replaced or supplemented by the
introduction of multichannel arrays in Pd vanilla
or a new buffer∼∼∼ clone. Backwards compatibility
would probably indicate a hybrid approach here,
with support for any and all of these options.

Another major inconsistency is that Pd lacks
anything like Max’s transport object, which pro-
vides a globally accessible scheduling clock and op-
tional secondary clocks bound to symbol-defined
names. The transport object is used to allow
certain objects (e.g. record∼∼∼ and delay∼∼∼) to de-
fine time intervals relative to a tempo rather than
absolute terms. All of the classes which utilize
transport in Max/MSP have been written with-
out this functionality.

Due to differences in toolkit font rendering, the
gui object comment may never be fully compliant
with Max. We invite developers who are proficient
in tcl/tk to help make comment behave more con-
sistently across platforms.

4 Roadmap
Here we discuss our vision for the future of Cy-
clone. We want to emphasize that because Cyclone
belongs to the Pd community, all of the following
is subject to revision according to the needs of the
community.

4.1 Plans for New Code

In the near future, once we have reached a stage
in development for a stable release, we plan to
make Cyclone 0.3 available for all platforms via
Pd’s externals manager and in upcoming versions
of Pd-l2ork and Purr Data. The source code will
be available on GitHub as usual, and we hope also
on puredata.info. As stated earlier, we welcome
contributions from the Pd community in any form.

Despite our progress, Cyclone is far from com-
plete; there are many Max/MSP object classes we
plan on including in future releases. New gui ob-
ject classes and Max’s more complicated control
and signal object classes present the most exciting
opportunities for future development.

Cyclone currently only has two gui object
classes (comment and scope∼∼∼). Users making the
transition from Max to Pd lament the dearth of
gui objects, so we hope to introduce more in future
releases. Such classes include radiogroup, a one-
dimensional grid of toggles; matrixctrl, a two-
dimensional grid of toggles or knobs for use with
matrix∼∼∼; rslider, a slider which allows the user
to select a number range; kslider, a visual piano
keyboard representation; multislider, an object
class similar to Pd’s garrays, and spectroscope∼∼∼,
which displays a signal’s spectrogram or sonogram.
Any new development of gui object classes should
make as efficient use of tcl/tk as possible. A sec-
ondary consideration is porting to the nwjs toolkit
used in Purr Data.

We have already mentioned transport and
buffer∼∼∼ as potential new control and signal
classes. The hash-table dictionary object dict
would be an important contribution given the
problematic accretion of features and bugs in
Max’s coll, which has similar functionality. We
hope also to clone the signal object classes
groove∼∼∼, a user-friendly sample player, and
gizmo∼∼∼, which detects and shifts frequency peaks
of an fft analysis for pitch transposition. In any
event, the Pd community’s priorities ought to help
shape future development.

4.2 Community Logistics

To conclude this paper it is necessary to discuss
logistics of Pd community involvement going for-
ward. First, some words about the legal ramifi-
cations of reverse engineering software are in or-
der. Cyclone has always existed in a legal gray
area. Although it employs names, syntax, and se-
mantics from Max/MSP, the algorithms and pro-

puredata.info

cedures used in the code are the original work of
the developers. It may also be problematic that it
specifically purports to offer Max/MSP compati-
bility. In the unlikely event of legal trouble, we
ought to have a contingency plan in place to sal-
vage the library, and community input is welcome.

Second, there have already been a number of
disagreements about the status and direction of
this project, and a good-faith effort to resolve them
are in the best interests of all involved. The pri-
mary disagreement has been about whether this
project is best released as a new (forked) library
with a new name, or as a new version of Cyclone
taking over as the canonical development branch.

There are well-reasoned arguments for both
positions. Here are some of the best reasons for
releasing this update under a new name.14 A sup-
plemental library of new objects could be released
under a new, similar name such as “Typhoon,” and
then users could install both libraries to get all the
objects. If they do overlap, two non-identical li-
braries with the same name is sure to be confusing
to users, while two libraries with similar goals but
with different names would give users finer control
over what they install and use. Forking projects
to add new features under a different name is a
common – even normative – development strategy
in open-source software; after all, Pd has already
had several forks of its own and users have man-
aged to navigate this terrain. Finally, Cyclone’s
infrastructure is overly complicated, and a library
of cloned objects might do better not to use it.

We respectfully disagree with much of this rea-
soning. It should be clear from the foregoing that
our primary goal has been to bring the existing ob-
ject classes from Cyclone up to date, not merely
to supplement it with new classes. It would make
some sense to release a separate library of new ob-
jects with a new name if it did not overlap in con-
tent with the old Cyclone, but name clashes re-
sulting from the existence of different classes with
the same name from libraries with different names
(e.g. counter in Cyclone and Gem) is already a
source of confusion for Pd users.

Suppose we were to release our work under
a different name (“Recyclone,” say), as a drop-
in replacement for Cyclone. Recyclone would be
identical to Cyclone in some respects, and its dif-
ferences would be non-arbitrary because of the
straightforward goal of Max/MSP compatibility.
One obvious downside to this is that users who

wanted to switch from Cyclone to Recyclone would
need to change namespace settings in their exist-
ing patches. The larger point is that since the pur-
pose of each branch differs only in that they tar-
get different versions of Max, they seem as much
like predecessor and successor versions of the same
software as the different versions of Max do. All
of the predecessor’s functionality is included in the
successor’s, with only minor changes.

The fact that two versions of the same li-
brary would be available via Pd’s externals man-
ager does not weaken our position. Indeed, mul-
tiple versions of many libraries are available, and
it is up to the user to install whichever suits their
needs. We believe that the disagreement is not
about the simultaneous availability of two ver-
sions of the same library, but about the existence
of two source branches with different maintain-
ers/developers. This is more a social problem than
a technical one. Provided that all parties are satis-
fied, we see no reason why cyclone-0.2 and cyclone-
0.3 cannot exist side by side in the Pd ecosystem
as a maintenance branch and development branch,
respectively. While forking may be the norma-
tive strategy, forks make the most sense when each
branch has ongoing diverging development.

Finally, we agree that Cyclone’s system of
modules is complicated; it is the primary moti-
vation for reorganizing and streamlining the code.
However, there is a great deal of useful code that
need not be redesigned from scratch. We hope our
efforts in increasing code transparency will encour-
age more participation from other developers.

Because many of the new Pd users in our com-
munity come from a Max/MSP background and
tend to be daunted by Pd’s steeper learning curve
and relatively economical object collection, we be-
lieve that the project presented here will be an im-
portant first step toward preserving Cyclone’s vi-
tal role in helping these users make that transition
gracefully. However, we also believe that Cyclone
is useful to Pd users in its own right. While we
acknowledge that our development might overlap
territory occupied by other libraries, we emphasize
that Cyclone is a large library with many purposes
outside of Max/MSP compatibility: it can replace
many objects from unmaintained libraries, reduce
the number of libraries a patch needs to load, or
simply serve as a supplement to Pd vanilla. All
of these purposes are significant justification for
continual active development.

14These were all expressed in a discussion on The Pd-list from February 2016. See https://lists.puredata.info/
pipermail/pd-list/2016-02/113377.html

https://lists.puredata.info/pipermail/pd-list/2016-02/113377.html
https://lists.puredata.info/pipermail/pd-list/2016-02/113377.html

5 Acknowledgements
There are many people we wish to thank.
Krzysztof Czaja’s initial effort was a large and wor-
thy undertaking, and one of the most successful in
the Pd world. Thanks to Hans-Christoph Steiner
and Fred Jan Kraan for their stewardship; without
them the library would likely be dead.

Katja Vetter’s pd-lib-builder is an extraordi-
nary tool for Pd developers, and has proved in-
valuable for understanding the structure of the
Cyclone code and identifying opportunities for im-
provement.

We thank Ivica Ico Bukvic for the threaded
version of coll, his ethic of active develop-
ment, and his constant encouragement. Jonathan
Wilkes’s work on Purr Data will be very important
to the future of Cyclone.

Thanks to Marco Matteo Markidis, Joel
Matthys, and anyone else who has contributed
code. Esteban Viveros and Flávio Schiavoni were
instrumental in getting the process started on sure
footing.

IOhannes m zmölnig merits gratitude for his
leadership and advice. We thank David Zicarelli
for his candid correspondence.

And of course we must thank Miller Puckette
for inventing both Max and Pd.

References

[1] K. Czaja, “[PD] pd-max compatibility,”
April, 2002. https://lists.puredata.info/
pipermail/pd-list/2002-04/005949.html

[2] K. Czaja, “[PD-announce] cyclone-0.1-
alpha1,” November, 2002. https://lists.
puredata.info/pipermail/pd-announce/
2002-11/000139.html

[3] H-C. Steiner, “[PD] Update cyclone mainte-
nance,” June, 2015. https://lists.puredata.
info/pipermail/pd-list/2015-06/110620.
html

[4] D. Zicarelli, “Max 5 and Attributes,” Octo-
ber, 2007. https://cycling74.com/2007/10/
31/max-5-and-attributes/

https://lists.puredata.info/pipermail/pd-list/2002-04/005949.html
https://lists.puredata.info/pipermail/pd-list/2002-04/005949.html
https://lists.puredata.info/pipermail/pd-announce/2002-11/000139.html
https://lists.puredata.info/pipermail/pd-announce/2002-11/000139.html
https://lists.puredata.info/pipermail/pd-announce/2002-11/000139.html
https://lists.puredata.info/pipermail/pd-list/2015-06/110620.html
https://lists.puredata.info/pipermail/pd-list/2015-06/110620.html
https://lists.puredata.info/pipermail/pd-list/2015-06/110620.html
https://cycling74.com/2007/10/31/max-5-and-attributes/
https://cycling74.com/2007/10/31/max-5-and-attributes/

	1 Introduction
	2 A Brief History of Cyclone
	2.1 Maintainers and Versions
	2.2 Cyclone Repositories
	2.2.1 Our Repository
	3 Cyclone 0.3
	3.1 Updating Cyclone to Max 7
	3.1.1 Attributes
	3.1.2 ``Magic''
	3.1.3 Other Significant Revisions
	3.2 Beyond Max Compatibility
	3.2.1 Code Restructuring
	3.2.2 Newly Cloned Object Classes
	3.2.3 Documentation
	3.2.4 Inconsistencies
	4 Roadmap
	4.1 Plans for New Code
	4.2 Community Logistics
	5 Acknowledgements

